Organosilyl- and Silylorgano-pentaboranes: Monocarbahexaboranes from 2-[(Chlorodimethylsilyl)methyl]pentaborane(9)

By John B. Leach, Gerald Oates, Judith B. Handley, Alexander P. Fung, and Thomas Onak,* Department of Chemistry, California State University, Los Angeles, California 90032, U.S.A.

Bridge and terminally substituted pentaborane(9) derivatives of the type [(CICH₂)Me₂Si]B₅H₈ have been prepared. Rearrangement of both the 1- and 2-terminally substituted pentaborane compounds to the carbon-attached isomers, $1-iand 2-[(CIMe_2Si)CH_2]B_5H_8$, is accomplished with the use of AICI₃ as catalyst. Flash thermolysis of $2-[(CIMe_2Si)-iand CICI_3)]$ $CH_2]B_5H_8$ yields $SiMe_2CIH$ (48%), B_5CH_9 (4.2%), and B_5CH_7 (9.4%) as the major volatile products. Alkylation of B_5H_9 with SiMe₃(CH₂CI) in the presence of AlCl₃ gives 1-MeB₅H₈ and SiMe₃Cl in quantitative amounts, whereas use of Si(CH₂Cl)Cl₃ as the alkylating agent gives only 1-[(Cl₃Si)CH₂]B₅H₈.

ALL the silicon-attached pentaborane isomers, μ -, 1-, and 2-H₃Si and Me₃Si, have previously been prepared and characterized.¹ Similar silylpentaboranes having functional groups (usually halogens) on the silicon atom have also been reported; 2,3 however, no functionalities have been placed on the carbon atom of the organosilylpentaboranes. Also, except for (Cl₂BCH₂)B₅H₈ and $(B_5H_8CH_2)B_5H_8^4$ no functionalities have been placed (CH₂Cl)Cl, rearranged to the 2-substituted analogue in the presence of diethyl ether. The 2-isomer, in turn, was converted to the 1-isomer by use of a catalytic amount of hexamethylenetetramine (hmt), Scheme. In the presence of AlCl₃ both 1- and 2-[(ClCH₂)Me₂Si]B₅H₈ underwent a 1,2 shift of the boron cage from the silicon to the methylene carbon to give 1- and 2-[(ClMe₂Si)CH₂]- B_5H_8 , respectively, in which the position of attachment

SCHEME (i) SiMe₂(CH₂Cl)Cl, $-Cl^-$; (ii) OEt₂; (iii) AlCl₃; (iv) hmt; (v) heat

on the organo-group of organopentaboranes.⁵ Because a model compound of the type (R₃SiCH₂)B₅H₈ [analogous to that proposed to be an intermediate in the conversion of bis(trimethylsilyl)pentaborane into silylcarbaboranes]⁶ was desired, we attempted to synthesize silvlorganopentaboranes both from the rearrangement of [(chloromethyl)silyl]pentaboranes and from the Friedel-Crafts alkylation of pentaborane with SiR₃(CH₂Cl).

RESULTS AND DISCUSSION

The bridged silvlpentaborane, μ -[(ClCH₂)Me₂Si]B₅H₈, prepared in 61% yield from [B₅H₈]⁻ ion and SiMe₂-

¹ D. F. Gaines and T. V. Iorns, J. Amer. Chem. Soc., 1968, **90**, 6617; 1967, **89**, 4249; Inorg. Chem., 1971, **10**, 1094. ² D. F. Gaines and J. Ullman, Inorg. Chem., 1974, **13**, 2792. ³ T. C. Geisler and A. D. Norman, Inorg. Chem., 1970, **9**, 2167; 1072 **11**, 2540.

1972, **11**, 2549.

at the polyboron cage site has not changed. The B_5H_8 cage apparently has a much greater migratory aptitude than a methyl group for there was no evidence that (ClEtMeSi)B₅H₈ is formed as a side product in this rearrangement. The apex-substituted C-B isomer, 1- $[(ClMe_2Si)CH_2]B_5H_8$, was also obtained directly from the 2-[(ClCH₂)Me₂Si]B₅H₈ by heating to 100 °C.

Attempts to prepare compounds with a Si-C-B₅ linkage by a modified Friedel–Crafts alkylation 5 of ${\rm B_5H_9}$ with SiMe₂(CH₂Cl)Cl or with SiMe₃(CH₂Cl) resulted instead in a quantitative yield of $1-MeB_5H_8$ [equations (1) and There is a high probability that alkylation of (2)].⁴ E. R. Altwicker, G. E. Ryschkewitsch, A. B. Garrett, and H. H. Sisler, Inorg. Chem., 1964, 3, 454.

J. B. Leach, G. Oates, S. Tang, and T. Onak, J.C.S. Dalton, 1975, 1018.

See original references to work in T. Onak, 'Organoborane Chemistry,' Academic Press, New York, 1975, pp. 196-202.

 B_5H_9 by the chlorosilane reagent is taking place, as

$$\begin{aligned} \operatorname{SiMe}_{3}(\operatorname{CH}_{2}\operatorname{Cl}) &+ \operatorname{B}_{5}\operatorname{H}_{9} \xrightarrow{\operatorname{AlCl}_{3}} 1 \operatorname{-MeB}_{5}\operatorname{H}_{8} + \\ & \operatorname{SiMe}_{3}\operatorname{Cl} \quad (1) \\ \operatorname{SiMe}_{2}(\operatorname{CH}_{2}\operatorname{Cl})\operatorname{Cl} &+ \operatorname{B}_{5}\operatorname{H}_{9} \xrightarrow{\operatorname{AlCl}_{3}} \\ & 1 \operatorname{-MeB}_{5}\operatorname{H}_{8} + \operatorname{SiMe}_{2}\operatorname{Cl}_{2} \quad (2) \end{aligned}$$

might be expected [equation (3)], but that the inter-

$$SiR_{3}(CH_{2}Cl) + B_{5}H_{9} \xrightarrow{AlCl_{3}} [(R_{3}Si)CH_{2}]B_{5}H_{8} + HCl \quad (3)$$

mediate (silylmethyl)pentaborane product undergoes rapid Si-C cleavage with HCl [equation (4)] under the

HCl + [(R₃Si)CH₂]B₅H₈
$$\xrightarrow{\text{AICl}_3}$$

1-MeB₅H₈ + SiR₃Cl (4)

conditions of the reaction. This is based on a separate control experiment in which $1-[(ClMe_2Si)CH_2]B_5H_8$ (prepared by the method shown in the Scheme), when subjected to HCl in the presence of AlCl₃, cleaved to give $1-MeB_5H_8$ and $SiMe_2Cl_2$. In still another control experiment, it is noted that HCl cleavage of the Si-C bond did not take place in the absence of the AlCl₃ catalyst. Interestingly, use of Si(CH₂Cl)Cl₃ as the Friedel-Crafts alkylating reagent resulted in nearly quantitative yield of $1-[(Cl_3Si)CH_2]B_5H_8$ with no evidence of products, *i.e.* SiCl₄ and $1-MeB_5H_8$, expected from Si-C bond cleavage. This difference in reaction for the trichlorosilane is attributed, in part, to a change in the Si-C bond polarity in the direction of inhibiting electrophilic attack by HCl.

Flash thermolysis of 2-[(ClMe₂Si)CH₂]B₅H₈ gave a moderate yield of volatile material, the major products being the parent carbapentaboranes B_5CH_9 and B_5CH_7 , as well as the silicon compound SiMe₂ClH. There was also evidence for a B_5CH_9 derivative, probably (B- or C-?) (ClMe₂Si)B₅CH₈, as well as very small amounts of a substituted $B_4C_2^{1,6}H_6$ and the parent $B_3C_2^{1,5}H_5$. Because B_5CH_9 can lead to B_5CH_7 under the conditions of the experiment, it seems reasonable to suggest that an initial step in this flash-thermolysis reaction could be a simple hydrogen transfer from the methylene carbon to silicon with concomitant cleavage of the Si-C bond and incorporation of the resulting HC unit into the base of the pyramidal boron cage [equation (5)].

As previously reported,⁶ flash thermolysis of the bis(silyl)pentaborane, $1,2-(Me_3Si)_2B_5H_7$, gives a substantial yield of small cage carbaboranes. On the basis of known organosilicon rearrangements, it was suggested that methylene insertion of one of the methyl carbon atoms may well precede carbon incorporation into the boron cage [equation (6)]. Because we now find that

$$\xrightarrow{H^{\mu}}_{Me} \xrightarrow{H^{\mu}}_{H} \xrightarrow{H^{\mu}}_{B-CH_2-Si-} \xrightarrow{-H_2}_{H} \xrightarrow{B-H}_{I_1} \xrightarrow{(6)}_{H} \xrightarrow{H^{\mu}}_{H} \xrightarrow{H^{\mu}}$$

2-[(ClMe₂Si)CH₂]B₅H₈ can be converted into B₅C carbaboranes, the first step in (6), leading to an SiCH₂-B linkage, now seems even more probable in the earlier study.⁶ It is suggested that the step in which the methylene carbon is incorporated into the boron cage can either entail simple H₂ loss together with hydrogen (bridge ?) migration to a cage boron atom to give a C-silylcarbaborane ⁶ as in equation (6), or hydrogen transfer from carbon to the silicon atom with C-Si bond cleavage to give, *e.g.* equation (5), the C-unsubstituted carbaborane as observed in the present study. In both cases elimination of geminal groups about the carbon atom (*i.e.* H,H to give H₂; or H,SiMe₂Cl to give SiMe₂ClH) is involved.

Mass Spectra.—The weak parent peak $(m/e\ 170)$ of both 1- and 2-[(ClCH₂)Me₂Si]B₅H₈, together with substantial peaks observed at $m/e\ 121$ and 107, indicates that loss of CH₂Cl and B₅H₈ occurs more readily than loss of a methyl fragment. The facile loss of CH₂Cl from Si-CH₂Cl appears to be a common phenomenon, as can be seen from a study of the substituted silicon series SiMe_{3-x}(CH₂Cl)Cl_x (Table 1). With both the 1- and 2-isomers of [(ClMe₂Si)CH₂]B₅H₈, loss of either methyl or CH₂B₅H₈ fragments from the silicon is preferred over loss of chlorine.

EXPERIMENTAL

Physical Measurements.—Positive-ion mass spectra (Table 1) were recorded using a Varian CH-5 high-resolution mass spectrometer. N.m.r. chemical-shift data (Table 2) for the protons were obtained using tetramethylsilane (τ 10.00) as internal standard. Boron-11 chemical-shift data (Table 2) were obtained using boron trichloride, δ -46.8 p.p.m. relative to boron trifluoride–diethyl ether, as external secondary standard. Both ¹H (100.0 MHz) and ¹¹B (32.1 MHz) n.m.r. spectra were recorded using a Varian HA-100 spectrometer. Boron-11-decoupled proton spectra and proton-decoupled ¹¹B n.m.r. spectra were obtained as outlined earlier.⁷ Gas-phase i.r. spectra were recorded on a Beckman IR-acculab 3 instrument.

Materials.—Pentaborane(9) was obtained from Callery Chemical Company, and the organosilicon compounds from PCR Inc. The silicon compounds were distilled from molecular sieves prior to use. All the materials were handled using conventional high-vacuum techniques.

⁷ T. Onak, K. Gross, J. Tse, and J. Howard, J.C.S. Dalton, 1973, 2633.

821

Mass spectra (partial)								
Compound	P^{a}	$P - CH_2Cl$	$P - CH_3$	P-Cl	$P - B_{s}H_{s}$	$P - CH_2B_5H_8$		
$2-[(\mathrm{ClCH}_2)\mathrm{Me}_2\mathrm{Si}]\mathrm{B}_5\mathrm{H}_8$	<1 (170)	16.0 (121)	<1 (155)	<1 (135)	100.0 (107)	[20.9] ^b (93)		
$1-[(ClCH_2)Me_2Si]B_5H_8$	<1 (170)	100.0 (121)	12.0 (155)	<1 (135)	29.2 (107)	$[37.9]^{b}$ (93)		
$2\text{-}[(\mathrm{ClMe_2Si})\mathrm{CH_2}]\mathrm{B_5H_8}$	(170)	(1.1)	28.0 (155)	(135)	8.9 (107)	100.0		
$1-[(ClMe_2Si)CH_2]B_5H_8$	9.4 (170)	(121)	100.0	13.8 (135)	(107)	82.1 (93)		
Si(CH ₂ Cl)Cl ₃	12.3	(121) 100.0 (133)	(100)	8.8 (147)	(101)	(00)		
$SiMe(CH_2Cl)Cl_2$	4.3	100.0	5.5 (147)	(127)				
$SiMe_2(CH_2Cl)Cl$	(102) 2.4 (142)	100.0	3.5 (197)	(127) 5.4 (107)				
SiMe ₃ (CH ₂ Cl)	(142) 1.0 (122)	(93) 100.0 (73)	6.2 (107)	(107)				

TABLE 1

⁶ The percentage of the base peak is reported with the m/e value in parentheses. Naturally occurring polyisotopic spectra were observed but the peaks in each envelope cited here represent the mass calculated using the ${}^{35}Cl$, ${}^{12}C$, ${}^{1}H$, ${}^{11}B$, and ${}^{26}Si$ isotopes. ⁶ B_5H_8 loss accompanied by loss of CH_2 from SiMe or Si(CH_2Cl) to give a SiH or SiCl species.

Nuclear magnetic resonance data						
Compound	Group	11B <i>a</i> , <i>b</i>	1H 8,0			
μ -[(ClCH ₂)Me ₂ Si]B ₅ H ₈	B ¹ –H	45.4 (d) (174) [1]	9.2 (q) (176) [1]			
	$B^{2-5}-H$	9.4 (d) (145) [4]	7.5 (q) (155) [4]			
	CH3		9.5 (s) [6]			
	CH ₂		7.1 (s) [2]			
	$H^{\mu(3,5)}$		12.6 (vbr, s) [2]			
	$H^{\mu(4)}$		11.9 (vbr, s) [1]			
2-[(ClCH ₂)Me ₂ Si]B ₅ H ₈	B1-H	49.8 (d) (173) [1]	9.5 (q) (173) [1]			
	B²—Si	13.1 (s) [1]				
	B ^{3, 5} –H	10.7 (d) (ca. 160) [2]	$\frac{1}{7}$ 2 (a) (cg. 160) [3]			
	B4H	7.2 (d) (ca. 160) [1]	J 1.2 (q) (cu. 100) [0]			
	CH3		9.8 (s) [6]			
	CH ₂		7.2 (s) [2]			
	$H^{\mu(2, 5)}$		$\begin{bmatrix} 12.5 \text{ (vbr, s)} \\ 2 \end{bmatrix}$			
	$H^{\mu(3,4)}$	FO O () 533	[11.9 (vbr, s) [2]			
$I-[(CICH_2)Me_2SI]B_5H_8$	$B^{1}-S^{1}$	58.2 (s) [1]				
	B₂-₀-H	12.7 (d) (169) [4]	7.6 (q) (166) [4]			
	CII		9.9 (S) [0]			
			1.2 (S) [Z]			
O LICIMO SILCU ID U	П [#] D1_U	50.9 (4) (164) [1]	12.3 (VDF, S) [4]			
$2 - [(CIMe_2 SI) CI1_2] D_5 I1_8$		15(c) [1]	9.9 (q) (171) [1]			
	D	-1.0 (5) [1] 19.9 (d) (158) [9]				
	B4_U	13.2 (0) (150) [2] 19.9 (d) (156) [1]	7.6 (q) (156) [3]			
	CH CH	18.2 (d) (150) [1]	95(c)			
	CH.		9.5 (s) overlapped [8]			
	$H^{(2,5)}$		(11.4 (ybr s) [2]			
	$H^{\mu(3,4)}$		12.3 (vbr, s) [2]			
1-[(ClMe_Si)CH_]B_H_	B ¹ -C	44.6 (s) [1]				
1 [(onio201)0112]25118	B2-5-H	13.8 (d) (164) [4]	7.6 (a) (161) [4]			
	CH.		9.8 (s) [6]			
	CH.		10.1 (s) [2]			
	H ^µ		12.1 (vbr, s) [4]			
$1-[(Cl_3Si)CH_2]B_5H_8$	B1-C	43.1 (s) [1]	(, , 2]			
	$B^{2-\delta}-H$	11.7 (d) (160) [4]	7.6 (q) [4]			
	CH2	.,.,.,	9.5 (s) ^a [2]			
	H^{μ}		12.2 (vbr, s) [4]			

TABLE 2

Nuclear magnetic resonance data

 $^{\bullet}\delta(OEt_{2}\cdot BF_{3}) 0 \text{ p.p.m.} ^{b}J \text{ values (in Hz) in parentheses, relative area of pattern in square brackets. } ^{\tau}(SiMe_{4}) 10. ^{d}On selective decoupling of the basal borons the CH₂ group resonance exhibited a partially resolved <math>1:1:1:1:1$ quartet pattern (J 6.3 Hz) similar to that observed for 1-MeB₅H₈ [J. B. Leach and T. Onak, J. Magnetic Resonance, 1971, **4**, 30] and assigned to $H-C-B^{1}$ coupling.

Reaction of [B₅H₈]⁻ Ion with SiMe₂(CH₂Cl)Cl.—To $[B_5H_8]^-$ (53 mmol) in diethyl ether, prepared in the standard manner⁸ by a low-temperature reaction of B_5H_9 with butyl-lithium, was added freshly distilled SiMe₂(CH₂Cl)Cl (54 mmol) while keeping the ion solution at -196 °C. The mixture was warmed to -78 °C with a bath of acetonesolid CO₂ surrounding the reaction flask. With constant stirring (1 h) the contents of the flask were allowed to attain -30 °C, complete solubility of all the materials in the diethyl ether occurring. On warming the mixture to -20 °C a white precipitate (LiCl) formed; the contents of the flask were stirred for another hour when the temperature had risen to -15 °C. An ice-bath was placed around the flask and most of the solvent was removed. A quantity of material approximately equal to the amount of diethyl ether originally used to prepare the ion was vacuum distilled from the reaction mixture, and the remainder of the material was transferred to a cold column ⁹ for fractionation. Keeping the cold column below -40 °C resulted in the removal of a small amount of diethyl ether; increasing the temperature of the column to -10 °C removed mostly the starting compound SiMe₂(CH₂Cl)Cl (2.8 mmol). The bulk of the desired product, μ -[(ClCH₂)- $\rm Me_2Si]B_5H_8$ (32.3 mmol, 61% yield), was obtained when the temperature of the column was increased slowly from -10 °C to room temperature. The early portion of this last fraction appeared, from ¹¹B n.m.r. (Table 2), to contain a small amount of the 2-isomer.

Rearrangement of µ- to 2-[(ClCH₂)Me₂Si]B₅H₈.—A mixture of μ -[(ClCH₂)Me₂Si]B₅H₈ (11.6 mmol) and diethyl ether (4 cm^3) was allowed to stand at room temperature in a glass ampoule equipped with a 4-mm side tube for taking n.m.r. measurements. After 2.5 h the ¹¹B n.m.r. spectrum (Table 2) of the mixture indicated that complete rearrangement to 2-[(ClCH₂)Me₂Si]B₅H₈ had occurred. Vacuum fractionation of the mixture gave the product (11.6 mmol) in a -22 °C trap and diethyl ether in a -196 °C trap.

Rearrangement of 2- to 1-[(ClCH₂)Me₂Si]B₅H₈.—A mixture of 2-[(ClCH₂)Me₂Si]B₅H₈ (3.3 mmol) and a catalytic amount of hexamethylenetetramine (hmt) was allowed to stand at room temperature for 4 d. The volatile fraction was found to be 1-[(ClCH₂)Me₂Si]B₅H₈ (2.3 mmol, 74% yield) by ¹¹B and ¹H n.m.r. (Table 2) as well as by mass-spectroscopic analysis (Table 1).

Rearrangement of 2-[(ClCH₂)Me₂Si]B₅H₈ to 2-[(ClMe₂Si)- $CH_2]B_5H_8$.—A mixture of 2-[(ClCH₂)Me₂Si]B₅H₈ (9.14 mmol) and a catalytic amount of freshly sublimed aluminium chloride was allowed to warm from -190 °C to room temperature in a sealed glass tube. An exothermic reaction ensued which was moderated with a cold bath. A ¹¹B n.m.r. spectrum (Table 2), taken after 1 h, indicated that complete rearrangement to the 2-[(ClMe₂Si)CH₂]B₅H₈ had occurred. Vacuum fractionation through a series of cold traps gave 2-[(ClMe₂Si)CH₂] B_5H_8 (-22 °C trap, 8.39 mmol, 92% yield), 2-MeB₅H₈ (-65 and -196 °C traps, ca. 0.05 mmol), $SiMe_2(CH_2Cl)Cl$ (-65 and -196 °C traps, 0.30 mmol), and a trace amount of $SiMe_2Cl_2$ in the -196 °C trap.

Rearrangement of 1-[(ClCH₂)Me₂Si]B₅H₈ to 1-[(ClMe₂Si)-CH₂]B₅H₈.—Catalyzed by AlCl₃. A mixture of 1-[(ClCH₂)-

⁸ D. F. Gaines and T. V. Iorns, J. Amer. Chem. Soc., 1967, 89, 3375; R. A. Geanangel and S. G. Shore, *ibid.*, p. 6771.
⁹ J. Dobson and R. Schaeffer, *Inorg. Chem.*, 1970, 9, 2183.
¹⁰ G. E. Ryschkewitsch, S. W. Harris, E. J. Mezey, H. H. Sisler, E. A. Weilmuenster, and E. G. Garrett, *Inorg. Chem.*, 1963, 2, 890.
¹¹ B. W. Figgie and B. L. Williams. Schettrophim. Acta 1959, 331.

¹¹ B. N. Figgis and R. L. Williams, Spectrochim. Acta, 1959, 331.

 $Me_2SiB_5H_8$ (0.83 mmol) and a catalytic amount of freshly sublimed AlCl₃ was allowed to warm, in a sealed n.m.r. tube, from -190 °C to room temperature. An exothermic reaction ensued which was moderated with a cold bath. After several minutes a ¹¹B n.m.r. spectrum was recorded and indicated that the rearrangement to 1-[(ClMe₂Si)CH₂]- B_5H_8 (Table 2) was complete. Vacuum fractionation through a series of cold traps gave 1-[(ClMe₂Si)CH₂]B₅H₈ (-45 °C trap, 0.43 mmol, 52% yield), SiMe₂(CH₂Cl)Cl (-78 °C trap, 0.05 mmol), and in the -196 °C trap a mixture of 1-MeB₅H₈ (0.09 mmol), SiMe₂Cl₂ (0.09 mmol), and SiMe₃Cl (0.10 mmol).

Thermal reaction. In another n.m.r. tube was sealed $1-[(ClCH_2)Me_2Si]B_5H_8$ (1.49 mmol) which was heated at 120 °C for 17 h. Vacuum fractionation through a series of cold traps gave 1-[(ClMe₂Si)CH₂]B₅H₈ (-45 °C trap, 0.75 mmol, 50% yield), and a mixture of more volatile products (0.19 mmol) in the -196 °C trap in which $1-MeB_5H_8$, from ¹¹B and ¹H n.m.r., is probably one of the major components. Remaining behind as a viscous involatile residue was a material (0.38 mmol) which had the ¹¹B n.m.r. pattern of an apex-substituted pentaborane with a singlet at δ 44.4 p.p.m. and a doublet of higher intensity at δ 13.4 p.p.m. (146 Hz).

Rearrangement of 2-[(ClCH₂)Me₂Si]B₅H₈ to 1-[(ClMe₂Si)-CH2]B5H8.—A sealed n.m.r. tube containing 2-[(ClCH2)-Me₂Si]B₅H₈ was warmed first at 55-60 °C for 65 h, after which a $^{11}\mathrm{B}$ n.m.r. spectrum revealed no change, and then at 100 °C for 30 h. After the final heating period the ¹¹B and ¹H n.m.r. spectra of the sample were coincidental with those of 1-[(ClMe₂Si)CH₂]B₅H₈ (Table 2) with no other resonances present. A mass spectrum of the product was, within experimental error, identical to that of 1-[(ClMe₂Si)- $CH_2]B_5H_8$ (Table 1).

Rearrangement of 1- to 2-[(ClMe₂Si)CH₂]B₅H₈.—A mixture of 1-[(ClMe₂Si)CH₂]B₅H₈ (0.40 mmol) and a catalytic quantity of hmt was heated at 71 °C for 17 h. Vacuum fractionation of the mixture indicated that nearly all the volatile material passed through a 0 °C trap and was collected in a -47 °C trap. A ¹¹B n.m.r. spectrum (Table 2) of the material in the latter trap was that of 2-[ClMe₂Si)-CH2]B5H8 (0.35 mmol, 88% yield).

Friedel-Crafts Methylation of B₅H₉ using SiMe₃(CH₂Cl).-Into a 5-mm n.m.r. tube was condensed 1.25 mmol each of SiMe₃(CH₂Cl) and B₅H₉ as well as a catalytic amount of AlCl_a. The tube was sealed and left overnight at room temperature. During this time the ¹H n.m.r. singlet (CH₂) resonance at τ 7.5 (external SiMe₄) disappeared and left only CH resonances in the τ 9–10 region. The ¹¹B n.m.r. spectrum exhibited a singlet at 43.9 and a 1:1 doublet at 12.5 p.p.m. The tube was opened and fractionated through traps at -78 and -190 °C. The trap at -78 °C contained no measurable amount of material and that at -190 °C contained an equimolar mixture (2.40 mmol) of 1-MeB₅H₈ and SiMe₃Cl identified by i.r., mass, and ¹¹B and ¹H n.m.r. spectroscopy.¹⁰⁻¹⁵

In a separate n.m.r. tube a mixture of 0.74 mmol each of $SiMe_3(CH_2Cl)$ and B_5H_9 together with a catalytic amount of

Chem., 1967, 6, 1465. ¹⁴ P. M. Tucker, T. Onak, and J. B. Leach, Inorg. Chem., 1970,

9, 1430. ¹⁵ M. P. Brown and D. E. Webster, J. Phys. Chem., 1960, 64,

¹² J. F. Ditter, F. J. Gerhart, and R. E. Williams, Adv. Chem. Ser., 1968, 72, 191. ¹³ T. Onak, G. B. Dunks, I. W. Searcy, and J. Spielman, Inorg.

AlCl₃ was kept at room temperature for 45 min when the bridge region of the ¹¹B-decoupled ¹H n.m.r. spectrum exhibited two resonances ca. 0.25 p.p.m. apart.¹⁴ The area of the two resonances indicated that methylation of the apex of B_5H_9 was ca. 40% complete. A cold-column fractionation of the mixture gave SiMe₃Cl (0.30 mmol), B_5H_9 (0.44 mmol), 1-MeB₅H₈ (0.32 mmol), and SiMe₃(CH₂Cl) (0.439 mmol). There was no evidence of a product with the formula [(Me₃Si)CH₂]B₅H₈.

Friedel-Crafts Methylation of B₅H₉ using SiMe₂(CH₂Cl)Cl. -Into a 5-mm n.m.r. tube was condensed 0.54 mmol each of SiMe₂(CH₂Cl)Cl and B₅H₉ and a catalytic amount of AlCl₃. The tube was sealed and left overnight at room temperature. The ¹¹B n.m.r. spectrum indicated that only ca. 10% of the B_5H_9 had reacted at the end of this time. After heating to 75 °C for 16 h the ¹¹B n.m.r. spectrum exhibited very little change in the doublet at δ 12.7 p.p.m. but the doublet at 52 p.p.m. attributed to the apex B-H of B_5H_9 had disappeared and was replaced by a singlet at δ 44 p.p.m. The proton spectrum (external SiMe₄) exhibited a broad singlet at τ 10.0, a very broad peak at τ 12.2, and a 1:1:1:1 quartet at τ 7.6 (J 170 Hz), all attributed to 1-methylpentaborane,14 as well as a strong singlet at τ 9.3 attributed to SiMe₂Cl₂.¹⁵ The area of the methyl resonance of $SiMe_2Cl_2$ was twice that of the methyl resonance of 1-MeB₅H₈. No further change in the ¹¹B spectrum occurred when the sample was heated at 110 $^{\circ}\mathrm{C}$ for 2 h.

Formation of 1-[(Cl₃Si)CH₂]B₅H₈ from the AlCl₃-catalyzed Reaction of B₅H₉ with Si(CH₂Cl)Cl₃.-Into a dry 5-mm n.m.r. tube was added Si(CH₂Cl)Cl₃ (0.14 g, 0.75 mmol), a catalytic quantity of $AlCl_3$, and B_5H_9 (0.75 mmol). The tube was sealed and monitored by both ¹H and ¹¹B n.m.r. After heating the sample to 90 °C for 21 h some change in the n.m.r. spectra had occurred, and after 50 h at 110 °C the apex doublet in the ¹¹B n.m.r. of B_5H_9 at δ 53 p.p.m. had completely disappeared and was replaced by a singlet at δ 43.1 p.p.m. Cold-column fractionation of the product mixture gave $1-[(Cl_3Si)CH_2]B_5H_8$ (-25 °C to ambient, 0.65 mmol) and at lower temperature trace quantities of BMeCl₂, SiCl₄, and BCl₃. A mass spectrum of 1-[(Cl₃Si)-CH₂]B₅H₈ exhibited an envelope of peaks in the parent region of m/e 205–214 with the maximum intensity at m/e 210. The ¹¹B and ¹H n.m.r. spectra are given in Table 2.

Reaction of HCl with 1-[(ClMe₂Si)CH₂]B₅H₈.--(a) Without AlCl₃. A mixture of 1-[(ClMe₂Si)CH₂]B₅H₈ (0.15 mmol) and dry HCl (0.38 mmol) in a sealed n.m.r. tube was allowed to stand at room temperature for 3 d and then heated at 80 °C for 19 h. Both ¹¹B and ¹H n.m.r. spectra of the

D. E. Watson, J. Chem. Soc., 1960, 5132.
 E. Groszek, J. B. Leach, G. T. F. Wong, C. Ungermann, and T. Onak, Inorg. Chem., 1970, 10, 2770.

18 T. Onak, R. P. Drake, and G. B. Dunks, J. Amer. Chem. Soc., 1965, 87, 2505.

mixture indicated no change had occurred. Fractionation of the mixture using $-30~\{1\mathchar`-30, [1\mathchar`-30] B_5H_8\}$ and -196 °C traps (HCl) gave the unchanged starting materials.

(b) With AlCl₃. A catalytic quantity of AlCl₃ was sealed into a side-arm attached to an n.m.r. tube. Both 1-[(ClMe₂Si)CH₂]B₅H₈ (0.058 mmol) and HCl (0.058 mmol) were condensed into the n.m.r. tube before sealing. After standing for 24 h at room temperature a ¹H n.m.r. spectrum indicated the build-up of $SiMe_2Cl_2$ (τ 9.20).¹⁵ After vacuum fractionation of the mixture through traps at -25, -130, and -190 °C only the -130 °C bath contained a measurable amount of material. A ¹¹B n.m.r. spectrum of this material was consistent with that 14 of $1-MeB_5H_8$, and a mass spectrum indicated the presence of both MeB₅H₈¹² and SiMe₂Cl₂. The ¹H n.m.r. spectrum was consistent with a nearly equimolar mixture of 1-MeB₅H₈¹⁴ and SiMe₂Cl₂.¹⁵

Reaction of HCl with 2-[(ClMe₂Si)CH₂]B₅H₈.--(a) Without AlCl₃. A mixture of 0.36 mmol each of 2-[(ClMe₂Si)CH₂]- $\mathrm{B}_{5}\mathrm{H}_{8}$ and dry HCl in a sealed n.m.r. tube was allowed to stand at room temperature for 2 d and then heated at 80 °C overnight (ca. 16–20 h). Both the ¹H and ¹¹B n.m.r. spectra of the mixture indicated no change had occurred. Fractionation of the mixture using $-30 \{2-[(ClMe_2Si)CH_2] \rm B_5H_8\}$ and $-196\ ^\circ C$ traps (HCl) gave the unchanged starting materials.

(b) With AlCl₃. The above mixture was recondensed into a 4-mm n.m.r. tube containing AlCl₂ (7.4 mg). The tube was sealed and heated to 80 °C for 24 h. The ¹¹B and ¹H n.m.r. spectra of the sample at the end of this heating period were essentially that of the starting materials except for a small ¹H singlet which appeared at τ 9.2 (SiMe₂Cl₂).¹⁵ After heating to 120 °C for ca. 6 h the peak at τ 9.2, SiMe₂Cl₂, grew to nearly half the intensity of the slightly broader H-C resonance at τ 9.5–9.6, the latter assigned to a mixture of $2-[(ClMe_2Si)CH_2]B_5H_8$ (Table 2) and 2-MeB₅H₈.¹⁴ The remainder of the ¹H spectrum and the $^{11}\mathrm{B}$ n.m.r. pattern were consistent with a nearly l:l ratio of the two pentaborane derivatives.

Conversion of 2-[(CIMe₂Si)CH₂]B₅H₈ into Carbaboranes.---A slow low-pressure transfer of 2-[(ClMe₂Si)CH₂]B₅H₈ (6.59 mmol) through a hot quartz tube at 570 °C was accomplished by vacuum transfer of the reactant from a trap. The volatile products were condensed at -196 °C and subsequently fractionated by cold-column distillation.⁹ The products were identified as SiMe₂ClH (3.18 mmol),¹⁶ $B_3C_2^{1,5}H_5$ (0.034 mmol),¹⁷ B_5CH_7 (0.63 mmol),^{17,18} and B₅CH₉ (0.28 mmol).¹⁹

We thank the National Science Foundation and the National Institutes of Health for partial funding of this project, and Oxford Polytechnic, England, for a travel grant (to J. B. L.).

[6/1296 Received, 5th July, 1976]

¹⁹ D. B. Dunks and M. F. Hawthorne, J. Amer. Chem. Soc., 1968, 90, 7355; Inorg. Chem., 1969, 8, 2667.